
Android Mind Reading: Memory
Acquisition and Analysis with DMD

and Volatility

Joe Sylve

joe@digdeeply.com

@jtsylve

Digital Forensics Solutions, LLC

www.digitalforensicssolutions.com

About the Speaker

• Senior Security Researcher at Digital Forensics
Solutions, LLC (New Orleans, La)

• GIAC Certified Forensic Analyst

• M.S. Computer Science

– University of New Orleans

2

What We’ll Cover

• Live Forensics

• Traditional Linux Memory Forensics Overview

• Problems with Android

• Acquisition Tools (DMD)

• Volatility

• Demo

3

What is Live Forensics?

• Traditional Forensics Deals with Non-Volatile
Data
– Hard Drives

– Removable Media

– Etc

• Live Forensics Deals with Volatile Data
– RAM Mostly

– Must be collected from a running machine

– Not as much control over the enviornment

4

Why Live Forensics?

• RAM dump provides both structured and
unstructured information

• Strings: application data, fragments of
communications, encryption keys, etc.

• Kernel and application structures

• Processes, open files, network structures, etc.

5

Why Live Forensics?

• Advanced Malware

• Encrypted or Temp File Systems

• Analysis

– FatKit

– Memparser

– Volatility

6

Android

7

Not Just Phones

8

9

Acquisition

10

Traditional Memory Acquisition

• Hardware
– JTAG
– Firewire
– Thunderbolt
– Can of Compressed Air

• Software
– Full Physical Memory

• /dev/(k)mem
• Fmem
• Crash

– Process Specific
• Ptrace
• Core dumps

11

Traditional Memory Acquisition
(Android Edition)

• Hardware
– JTAG (unlikely)
– Firewire
– Thunderbolt
– Can of Compressed Air

• Software
– Full Physical Memory

• /dev/(k)mem
• Fmem
• Crash

– Process Specific
• Ptrace
• Core dumps

12

Fmem Internals

1. Obtaining the starting offset specified by the
read operation.

2. Checking that the page corresponding to this
offset is physical RAM and not part of a
hardware device's address space.

3. Obtaining a pointer to the physical page
associated with the offset.

4. Writing the contents of the acquired page to
the userland output buffer.

13

Fmem Internals

1. Obtaining the starting offset specified by the
read operation.

2. Checking that the page corresponding to this
offset is physical RAM and not part of a
hardware device's address space.

3. Obtaining a pointer to the physical page
associated with the offset.

4. Writing the contents of the acquired page to
the userland output buffer.

14

/proc/iomem

cat /proc/iomem
02b00000-02efffff : msm_hdmi.0
03700000-039fffff : kgsl_phys_memory
03700000-039fffff : kgsl
03a00000-03a3ffff : ram_console
03b00000-03dfffff : msm_panel.0
20000000-2e7fffff : System RAM
 20028000-20428fff : Kernel text
 2044a000-2058ca13 : Kernel data
30000000-3bffffff : System RAM
a0000000-a001ffff : kgsl_reg_memory
a0000000-a001ffff : kgsl
a0200000-a0200fff : msm_serial_hs_bcm.0
a0300000-a0300fff : msm_sdcc.1
…

15

Problem 1: dd

• dd if=/dev/fmem of=ram.dd
count=yyyy skip=xxxx

• lseek(unsigned int fd, off_t
offset, unsigned int origin)

• vfs_llseek(struct file *file,
loff_t offset, int origin)

• Original Offset: 0x80000000

• Signed Extension:
0xFFFFFFFF80000000

16

Problem 1:dd

• Not really Fmem’s fault

• Problem is in implementation of Android’s dd

• However, it would still be suboptimal if dd
worked

– dd performs a read operation for every block

– Context Switches

17

Fmem Internals

1. Obtaining the starting offset specified by the
read operation.

2. Checking that the page corresponding to
this offset is physical RAM and not part of a
hardware device's address space.

3. Obtaining a pointer to the physical page
associated with the offset.

4. Writing the contents of the acquired page to
the userland output buffer.

18

Problem 2: page_is_ram

• http://lxr.linux.no/#linux+v3.0.4/kernel/resource.
c#L363

• Missing in Linux kernel on ARM (Android)

• Essentially walks iomem_resource in the kernel
to find pages in the physical address space that
are RAM

• Not cool to walk across pages that aren’t RAM
(likely mapped to I/O devices, etc.)

• Can get the basic idea by looking at /proc/iomem

19

http://lxr.linux.no/
http://lxr.linux.no/

/proc/iomem

cat /proc/iomem
02b00000-02efffff : msm_hdmi.0
03700000-039fffff : kgsl_phys_memory
03700000-039fffff : kgsl
03a00000-03a3ffff : ram_console
03b00000-03dfffff : msm_panel.0
20000000-2e7fffff : System RAM
20028000-20428fff : Kernel text
2044a000-2058ca13 : Kernel data
30000000-3bffffff : System RAM
a0000000-a001ffff : kgsl_reg_memory
a0000000-a001ffff : kgsl
a0200000-a0200fff : msm_serial_hs_bcm.0
a0300000-a0300fff : msm_sdcc.1
…

20

DMD

• Droid Memory Dumper

– Needs a Better Name

• Loadable Kernel Module

• Dump Memory directly to the SD card or over
the network

– Network dump over adb (Android Debug Bridge)

• Minimizes interaction between userland and
kernelland

21

Droid Memory Dumper (DMD)

1. Parsing the kernel’s iomem_resource
structure to learn the physical memory
address ranges of system RAM.

2. Performing physical to virtual address
translation for each page of memory.

3. Reading all pages in each range and writing
them to either a file (typically on the device’s
SD card) or a TCP socket.

22

DMD (TCP)

$ adb push dmd-evo.ko /sdcard/dmd.ko

$ adb forward tcp:4444 tcp:4444

$ adb shell

$ su

insmod /sdcard/dmd.ko path=tcp:4444

Then on host:

$ nc localhost 4444 > evo.dump

23

DMD (SD Card)

$ adb push dmd-evo.ko /sdcard/dmd.ko

$ adb shell

$ su

insmod /sdcard/dmd.ko path=/sdcard

24

Forensics Note

• Writing to SD card requires “violating” a common forensic
rule of thumb:

• Order of Volatility
– RAM  on-the-spot live forensics  non-volatile memory

(hard drives, flash, etc.)  CDs, etc.

• Acquire and preserve most volatile evidence first
• On Android, the only non-volatile removable storage that

we can use to store memory dump is the SD card
• Commonly underneath the battery
• Removable of battery == power failure for device!
• Solution: Tether Android phone, USB mode, image SD, then

dump memory to SD

25

DEMO

Please do what you must to appease
the Live Demo Gods…

26

Testing for Soundness

1. Use emulator to get RAM snapshot

2. Use DMD to acquire RAM image

3. Compare (1) and (2) for identical pages

27

Not Just Android…

• DMD works on Linux too!

28

Analysis

• We’ve got the RAM dumps so now what?

• Volatility

– https://www.volatilesystems.com/default/volatility

• Andrew Case (@attrc)

– Worked on Linux port of Volatility

– Worked on ARM port 

29

https://www.volatilesystems.com/default/volatility
https://www.volatilesystems.com/default/volatility

Volatility

• The goal is to recreate the set of commands
that would be run on a Linux system to
investigate activity and possible compromise

30

Recovered Process Information

• Process listing (ps aux)

– Command line arguments are retrieved from
userland*

• Memory Maps (/proc/<pid>/maps)

– Can also recover (to disk) specific address ranges*

• Open Files (/proc/<pid>/fd)

31

Networking Information

• Network interface information (ifconfig)

• Open and listening sockets (netstat)

• ARP tables (arp –a)

• Routing table (route –n)

• Routing cache (route –C)

• Queued Packets

• Netfilter NAT table (/proc/net/nf_conntrack)
– Src/Dst IP, # of packets sent, and total bytes for each

NAT’d connection

32

Misc. Information

• Kernel debug buffer (dmesg)

• Loaded kernel modules (lsmod)

• Mounted filesystems (mount, /proc/mounts)

33

Historical Information

• kmem_cache

– Provides a consistent and fast interface to allocate
objects (C structures) of the same size

– Keep freelists of previously allocated objects for
fast allocation

• Walking the freelists provides an orderly
method to recover previous structures

34

Historical Information

• Can recover a number of useful structures:
– Processes

– Memory Maps

– Networking Information

• Two limitations:
– The aggressiveness of the allocator (SLAB / SLUB)

when removing freelists

– Needed references being set to NULL or freed on
deallocation

35

Other Cool Stuff

• See: Linux Memory Analysis with Volatility

– 2011 Open Memory Forensics Workshop

– Andrew Case

– http://bit.ly/xVnwyP

• Rootkit detection

• Live CD Analysis

• Dalvik Analysis (coming)

36

DEMO 2

If the first demo didn’t work this is
going to be a really short one…

37

One more thing…

• DMD needs a better name!

• Tweet or Email me Suggestions

– joe@digdeeply.com

– @jtsylve

• Best suggestion gets a beer (or something)

38

mailto:joe@digdeeply.com

Digital Forensics Solutions, LLC

• Registry Decoder

– digitalforensicssolutions.com/registrydecoder/

• Scalpel

– digitalforensicssolutions.com/Scalpel/

• DMD

– To be released soon

– Watch dfsforensics.blogspot.com

39

Questions?

• Joe Sylve
– joe@digdeepy.com
– @jtsylve

• “Acquisition and analysis of volatile memory from
android devices”
– Digital Investigation (2012)
– http://bit.ly/xFEPoj

• Digital Forensics Solutions, LLC
– www.digitalforensicssolutions.com
– dfsforensics.blogspot.com
– @dfsforensics

40

