

Psyche Database Description

Sponsored By:

12 Oct 2008

Psyche Database Description
12 Oct 2008

Page 2 of 18

Revision History

Date Author(s) Summary of Changes

12 Oct 2008 Ponte Technologies Initial release; corresponds to Psyche v0.2

Psyche Database Description
12 Oct 2008

Page 3 of 18

Table of Contents

Introduction ... 4

Design and Approach .. 4

Tables .. 4

Stored Procedures ... 8

GUI-to-DB API ... 12

get_flows() .. 12

get_traffic() ... 13

get_sessions() .. 14

bw_by_port() .. 16

bw_ratio() .. 17

Psyche Database Description
12 Oct 2008

Page 4 of 18

· Source traffic by host/protocol/port
· Destination traffic by host/protocol/port
· Sessions by protocol (i.e., TCP, UDP, and Other)

Introduction

Psyche uses a specialized, non-relational PostgreSQL database (DB) to meet its near real-time
archival, aggregation, and retrieval needs. The SQL file that defines the DB's schema, as well as
its permissions and stored procedures, is named init_db.sql and is located in the distribution
package.

The following sections are meant to supplement the comments and explanations found in
init_db.sql. That initialization file explains the structure of each table and contains the actual
stored procedure code, while this document describes the overall approach and GUI-to-DB
application programming interface (API). Note that database installation and configuration
instructions are located in the distribution package’s INSTALL file.

Design and Approach

With Psyche being a security analysis tool, speed and intelligent preprocessing were two primary
goals of the DB's design; the tool should provide relevant, aggregated data to an analyst in a
timely fashion. To meet these front-end needs, several different aggregation approaches were
implemented, including:

The DB’s tables and stored procedures, described in the following sections, were engineered
specifically for these aggregation and retrieval purposes.

Tables

The following table descriptions briefly explain each table's purpose and its use within the
Psyche architecture; for granular details of the tables themselves, please refer to the init_db.sql
file mentioned above.

flow

The flow table stores all the raw flows received by the Psyche
Collector, pfcapd. This table, which currently grows indefinitely, will
be controlled by an aging process in a future development phase.

Flows will never be deleted once they have been aggregated into the
specialized, front-end tables; this allows these tables to be
reconstructed in the event of integrity issues or corruption. In addition,
this approach easily allows future aggregate tables to encapsulate the
flows archived during previous development phases.

Psyche Database Description
12 Oct 2008

Page 5 of 18

The Psyche Collector is the only process to currently access the flow table; it directly inserts
flows into the table and subsequently selects flows from the table via aggregation stored
procedures.

src_traffic

The src_traffic table contains aggregate source traffic data (by interval)
for each unique IP/port/protocol triple seen per router/exporter. It is
populated by an aggregation stored procedure, aggregate_src_traffic(),
invoked by the Psyche Collector several times per second and is
leveraged by various front-end stored procedures.

dst_traffic

The dst_traffic table contains aggregate destination traffic data (by
interval) for each unique IP/port/protocol triple seen per
router/exporter. It is populated by an aggregation stored procedure,
aggregate_dst_traffic(), invoked by the Psyche Collector several times
per second and is leveraged by various front-end stored procedures.

tcp_session

The tcp_session table holds reconstructed TCP sessions and is
populated by an aggregation stored procedure,
aggregate_tcp_session(), invoked by the Psyche Collector several
times per second. This table is leveraged by the get_sessions() and
bw_ratio() front-end stored procedures.

Note that the age_tcp_session() stored procedure moves expired
sessions to the aged_tcp_session table. By maintaining two separate
tables for TCP sessions rather than one containing all TCP sessions, the
TCP session aggregation stored procedure is able to search a smaller
number of rows and minimize its processing time.

Psyche Database Description
12 Oct 2008

Page 6 of 18

aged_tcp_session

The aged_tcp_session table, which holds reconstructed TCP sessions
that have been aged out of the tcp_session table, is leveraged by the
get_sessions() and bw_ratio() front-end stored procedures. The
age_tcp_session() stored procedure, invoked by the Psyche Collector
several times per second, is responsible for moving old sessions from
the tcp_session table to the aged_tcp_session table.

Again, by maintaining two separate tables for TCP sessions rather than
one containing all TCP sessions, the TCP session aggregation stored
procedure is able to search a smaller number of rows and minimize its
processing time.

udp_session

The udp_session table holds reconstructed UDP sessions and is
populated by an aggregation stored procedure,
aggregate_udp_session(), invoked by the Psyche Collector several
times per second. This table is leveraged by the get_sessions() and
bw_ratio() front-end stored procedures.

Note that the age_udp_session() stored procedure moves expired
sessions to the aged_udp_session table. By maintaining two separate
tables for UDP sessions rather than one containing all UDP sessions,
the UDP session aggregation stored procedure is able to search a
smaller number of rows and minimize its processing time.

aged_udp_session

The aged_udp_session table, which holds reconstructed UDP sessions
that have been aged out of the udp_session table, is leveraged by the
get_sessions() and bw_ratio() front-end stored procedures. The
age_udp_session() stored procedure, invoked by the Psyche Collector
several times per second, is responsible for moving old sessions from
the udp_session table to the aged_udp_session table.

Again, by maintaining two separate tables for UDP sessions rather than
one containing all UDP sessions, the UDP session aggregation stored
procedure is able to search a smaller number of rows and minimize its
processing time.

Psyche Database Description
12 Oct 2008

Page 7 of 18

Note: There are also various internal state tables that maintain the state information the Psyche
Collector needs for aggregation purposes. Holding this data in the DB enables the Collector to
remain stateless, which improves its performance and helps protect data integrity if system
issues arise.

The Psyche Collector is the only process to currently access and update these state tables, which
are solely used to hold internal information and are not intended for front-end use.

other_session

The other_session table holds reconstructed ‘other’ sessions (non-TCP
and non-UDP) and is populated by an aggregation stored procedure,
aggregate_other_session(), invoked by the Psyche Collector several
times per second. This table is leveraged by the get_sessions() and
bw_ratio() front-end stored procedures.

Note that the age_other_session() stored procedure moves expired
‘other’ sessions to the aged_other_session table. By maintaining two
separate tables for these sessions rather than one containing all ‘other’
sessions, the ‘other’ session aggregation stored procedure is able to
search a smaller number of rows and minimize its processing time.

aged_other_session

The aged_other_session table, which holds reconstructed ‘other’
sessions that have been aged out of the other_session table, is leveraged
by the get_sessions() and bw_ratio() front-end stored procedures. The
age_other_session() stored procedure, invoked by the Psyche Collector
several times per second, is responsible for moving old sessions from
the other_session table to the aged_other_session table.

Again, by maintaining two separate tables for these sessions rather than
one containing all ‘other’ sessions, the ‘other’ session aggregation
stored procedure is able to search a smaller number of rows and
minimize its processing time.

Psyche Database Description
12 Oct 2008

Page 8 of 18

Stored Procedures

Stored procedures provide the mechanism by which flow aggregation and front-end data retrieval
occur. From an aggregation perspective, these procedures serve as functions invoked by the
Psyche Collector to update tables and preserve state within the DB itself. From the front-end,
these procedures are used to provide highly configurable views into the database. The following
stored procedure descriptions briefly explain the procedures and their roles within Psyche; please
refer to the GUI-to-DB API section and the init_db.sql file for code details.

aggregate_src_traffic()

The aggregate_src_traffic() stored procedure is used by the Psyche Collector to aggregate flows
from the flow table into the src_traffic table. It determines which flows need to be aggregated by
querying the src_traffic_state table for the current last_fid value, which corresponds to the last
flow processed by this aggregation routine. To prevent potential concurrency issues between
simultaneous invocations of this function, an exclusive lock is placed on the src_traffic_state
table for the duration of each transaction.

For new flows being aggregated, this procedure groups data by interval, src_addr, src_port, and
protocol into a temporary table, then compares these values to entries in the src_traffic table. If a
match is found, then the appropriate row in the src_traffic table is updated to include the new
data. However, if the new flow corresponds to the first time a tuple has been seen, a new row is
inserted into the src_traffic table. The procedure concludes by updating the last_fid value in the
src_traffic_state table with the id of last flow processed.

aggregate_dst_traffic()

The aggregate_dst_traffic() stored procedure is used by the Psyche Collector to aggregate flows
from the flow table into the dst_traffic table. It determines which flows need to be aggregated by
querying the dst_traffic_state table for the current last_fid value, which corresponds to the last
flow processed by this aggregation routine. To prevent potential concurrency issues between
simultaneous invocations of this function, an exclusive lock is placed on the dst_traffic_state
table for the duration of each transaction.

For new flows being aggregated, this procedure groups data by interval, dst_addr, dst_port, and
protocol into a temporary table, then compares these values to entries in the dst_traffic table. If a
match is found, then the appropriate row in the dst_traffic table is updated to include the new
data. However, if the new flow corresponds to the first time a tuple has been seen, a new row is
inserted into the dst_traffic table. The procedure concludes by updating the last_fid value in the
dst_traffic_state table with the id of last flow processed.

Psyche Database Description
12 Oct 2008

Page 9 of 18

aggregate_tcp_session()

The aggregate_tcp_session() stored procedure is used by the Psyche Collector to aggregate flows
from the flow table into the tcp_session table. It determines which flows need to be aggregated
by querying the tcp_session_state table for the current last_fid value, which corresponds to the
last flow processed by this aggregation routine. To prevent potential concurrency issues between
simultaneous invocations of this function, an exclusive lock is placed on the tcp_session_state
table for the duration of each transaction.

For each flow being aggregated, this procedure checks to see if the flow belongs to an existing
TCP session in the tcp_session table. If so, it updates the appropriate fields of the matched row.
However, if the new flow belongs to a new TCP session, a new row is inserted into the
tcp_session table. The procedure concludes by updating the last_fid value in the
tcp_session_state table with the id of last flow processed.

age_tcp_session()

The age_tcp_session() stored procedure is used by the Psyche Collector to move old TCP
sessions from the tcp_session table to the aged_tcp_session table. To prevent potential
concurrency issues between simultaneous invocations of this function, an exclusive lock is
placed on the aged_tcp_session_state table for the duration of each transaction.

This function checks the last activity time stamps of sessions in the tcp_session table to
determine whether or not they should be aged; this technique will be updated in a future
development phase to leverage flows’ TCP flags.

aggregate_udp_session()

The aggregate_udp_session() stored procedure is used by the Psyche Collector to aggregate
flows from the flow table into the udp_session table. It determines which flows need to be
aggregated by querying the udp_session_state table for the current last_fid value, which
corresponds to the last flow processed by this aggregation routine. To prevent potential
concurrency issues between simultaneous invocations of this function, an exclusive lock is
placed on the udp_session_state table for the duration of each transaction.

For each flow being aggregated, this procedure checks to see if the flow belongs to an existing
UDP session in the udp_session table. If so, it updates the appropriate fields of the matched row.
However, if the new flow belongs to a new UDP session, a new row is inserted into the
udp_session table. The procedure concludes by updating the last_fid value in the
udp_session_state table with the id of last flow processed.

age_udp_session()

The age_udp_session() stored procedure is used by the Psyche Collector to move old UDP
sessions from the udp_session table to the aged_udp_session table. To prevent potential

Psyche Database Description
12 Oct 2008

Page 10 of 18

concurrency issues between simultaneous invocations of this function, an exclusive lock is
placed on the aged_udp_session_state table for the duration of each transaction.

aggregate_other_session()

The aggregate_other_session() stored procedure is used by the Psyche Collector to aggregate
flows from the flow table into the other_session table. It determines which flows need to be
aggregated by querying the other_session_state table for the current last_fid value, which
corresponds to the last flow processed by this aggregation routine. To prevent potential
concurrency issues between simultaneous invocations of this function, an exclusive lock is
placed on the other_session_state table for the duration of each transaction.

For each flow being aggregated, this procedure checks to see if the flow belongs to an existing
session in the other_session table. If so, it updates the appropriate fields of the matched row.
However, if the new flow belongs to a new session, a new row is inserted into the other_session
table. The procedure concludes by updating the last_fid value in the other_session_state table
with the id of last flow processed.

age_other_session()

The age_other_session() stored procedure is used by the Psyche Collector to move old non-TCP
and non-UDP sessions from the other_session table to the aged_other_session table. To prevent
potential concurrency issues between simultaneous invocations of this function, an exclusive
lock is placed on the aged_other_session_state table for the duration of each transaction.

get_flows()

The get_flows() stored procedure is used by the Psyche GUI to populate the grid view on the
‘Query Raw Flows’ web page. This function leverages the flow table to obtain its results.

get_traffic()

The get_traffic() stored procedure is used by the Psyche GUI to populate the grid view on the
‘Top Talkers’ web page. This function leverages the src_traffic and dst_traffic tables to obtain its
results.

get_sessions()

The get_sessions() stored procedure is used by the Psyche GUI to populate the grid view on the
‘Histogram’ web page. This function leverages the various session tables to obtain its results.

Psyche Database Description
12 Oct 2008

Page 11 of 18

Note: The various front-end stored procedures were designed to be flexible, building their
final queries dynamically based on their numerous input parameters. Please refer to the GUI-
to-DB API section for details.

In addition, these front-end stored procedures leverage various internal ‘helper’ functions not
listed here. Please see the init_db.sql file mentioned above for code details.

bw_by_port()

The bw_by_port() stored procedure is used by the Psyche GUI when creating the graph located
on the ‘Top Talkers’ web page. This function leverages the src_traffic and dst_traffic tables to
obtain the list of protocol/port pairs that have consumed the most bandwidth over a specified
timeframe.

bw_ratio()

The bw_ratio() stored procedure is used by the Psyche GUI when creating the graph located on
the ‘Histogram’ web page. This function leverages the various session tables to obtain the data
points, which represent the distribution of (in_bytes / out_bytes) values of relevant sessions, for
the histogram.

Psyche Database Description
12 Oct 2008

Page 12 of 18

GUI-to-DB API

This section documents the API for the various stored procedures accessible by the Psyche GUI.
For each stored procedure below, details are provided for input parameters, output parameters,
and example invocation syntax.

get_flows()

Parameters
The following function prototype illustrates the stored procedure name and sequence of
parameters. Following the prototype is a detailed list of the input parameters.

get_flows(network(varchar(18)), router(varchar(16)), inc_prot_ranges(integer[][]),
 inc_prots(integer[]), exc_prot_ranges(integer[][]), exc_prots(integer[]),
 inc_port_ranges(integer[][]), inc_ports(integer[]), exc_port_ranges(integer[][]),
 exc_ports(integer[]), start_time(timestamp with time zone),
 end_time(timestamp with time zone), OUT count(bigint), OUT results(refcursor));

network [varchar(18)] // network (in CIDR notation) to match; a value of 'none' applies no filter
router [varchar(16)] // router name or IP to match; a value of 'none' applies no filter
inc_prot_ranges [integer[][]] // array of protocol ranges to match; a value of null applies no filter
inc_prots [integer[]] // array of specific protocols to match; a value of null applies no filter
exc_prot_ranges [integer[][]] // array of protocol ranges to filter out; a value of null applies no filter
exc_prots [integer[]] // array of specific protocols to filter out; a value of null applies no filter
inc_port_ranges [integer[][]] // array of port ranges to match; a value of null applies no filter
inc_ports [integer[]] // array of specific ports to match; a value of null applies no filter
exc_port_ranges [integer[][]] // array of port ranges to filter out; a value of null applies no filter
exc_ports [integer[]] // array of specific ports to filter out; a value of null applies no filter
start_time [timestamp with time zone] // time from which to search
end_time [timestamp with time zone] // time to end search

Output Parameters
The results of the get_flows() stored procedure are accessed via output parameters. The two
output parameters for this function are:

count [bigint] // number of rows in result set
results [refcursor] // result set cursor

The results refcursor will point into a result set with the following columns:

id | router | src_addr | dst_addr | start_time | end_time | tcp_flags | prot | tos |
input_if | output_if | src_as | dst_as | src_port | dst_port | src_mask | dst_mask | next_hop | pkts | bytes

Note that these columns reflect the contents of the flow table. Please see init_db.sql file for
details of these fields.

Psyche Database Description
12 Oct 2008

Page 13 of 18

Invocation
Note that each cursor exists only as long as the current transaction. Therefore, the GUI must
explicitly begin and end the transaction that encompasses this stored procedure call. Below is an
example invocation of the get_flows() stored procedure that obtains the flows seen by the
68.34.49.254 exporter/router between '2008-09-06 00:00:00-04' and the current time. Note that it
includes all protocols and ports with the exception of protocol 1 and ports 22 and 25. The fetch
command retrieves the first 10 results.

begin;
select get_flows('none',’68.34.49.254',null,null,null,array[1],null,null,null,array[22,25],
 '2008-09-06 00:00:00-4',now());
fetch 10 from "<unnamed portal 2>";
end;

get_traffic()

Parameters
The following function prototype illustrates the stored procedure name and sequence of
parameters. Following the prototype is a detailed list of the input parameters.

get_traffic(network(varchar(18)), router(varchar(16)), direction(varchar(3)),
 inc_prot_ranges(integer[][]), inc_prots(integer[]), exc_prot_ranges(integer[][]),
 exc_prots(integer[]), inc_port_ranges(integer[][]), inc_ports(integer[]),
 exc_port_ranges(integer[][]), exc_ports(integer[]), start_time(timestamp with time zone),
 end_time(timestamp with time zone), OUT count(bigint), OUT results(refcursor));

network [varchar(18)] // network (in CIDR notation) to match; a value of 'none' applies no filter
router [varchar(16)] // router name or IP to match; a value of 'none' applies no filter
direction [varchar(3)] // perspective or orientation of traffic; acceptable values are 'src' and 'dst'
inc_prot_ranges [integer[][]] // array of protocol ranges to match; a value of null applies no filter
inc_prots [integer[]] // array of specific protocols to match; a value of null applies no filter
exc_prot_ranges [integer[][]] // array of protocol ranges to filter out; a value of null applies no filter
exc_prots [integer[]] // array of specific protocols to filter out; a value of null applies no filter
inc_port_ranges [integer[][]] // array of port ranges to match; a value of null applies no filter
inc_ports [integer[]] // array of specific ports to match; a value of null applies no filter
exc_port_ranges [integer[][]] // array of port ranges to filter out; a value of null applies no filter
exc_ports [integer[]] // array of specific ports to filter out; a value of null applies no filter
start_time [timestamp with time zone] // time from which to search
end_time [timestamp with time zone] // time to end search

Output Parameters
The results of the get_traffic() stored procedure are accessed via output parameters. The two
output parameters for this function are:

count [bigint] // number of rows in result set
results [refcursor] // result set cursor

Psyche Database Description
12 Oct 2008

Page 14 of 18

The results refcursor will point into a result set with the following columns:

interval_start | router | addr | prot | port | pkts |bytes

interval_start // beginning timestamp of this data’s interval
router // name or IP of exporting device
addr // IP address of host
prot // protocol number
port // port number
pkts // number of packets for this router/addr/prot/port over the interval
bytes // number of bytes for this router/addr/prot/port over the interval

Invocation
Note that each cursor exists only as long as the current transaction. Therefore, the GUI must
explicitly begin and end the transaction that encompasses this stored procedure call. Below is an
example invocation of the get_traffic() stored procedure that obtains the source traffic seen by
the 68.34.49.254 exporter/router between '2008-08-05 00:00:00-04' and the current time. Note
that it includes all protocols and ports with the exception of protocol 1 and ports 22 and 25. The
fetch command retrieves the first 10 results.

begin;
select get_traffic('none','68.34.49.254',’src’,null,null,null,array[1],null,null,null,array[22,25],
 '2008-08-05 00:00:00-4',now());
fetch 10 from "<unnamed portal 2>";
end;

get_sessions()

Parameters
The following function prototype illustrates the stored procedure name and sequence of
parameters. Following the prototype is a detailed list of the input parameters.

get_sessions(network(varchar(18)), router(varchar(16)), inc_prot_ranges(integer[][]),
 inc_prots(integer[]), exc_prot_ranges(integer[][]), exc_prots(integer[]),
 inc_port_ranges(integer[][]), inc_ports(integer[]), exc_port_ranges(integer[][]),
 exc_ports(integer[]), min_ratio(real), max_ratio(real),
 start_time(timestamp with time zone), end_time(timestamp with time zone),
 OUT count(bigint), OUT results(refcursor));

network [varchar(18)] // network (in CIDR notation) to match; a value of 'none' applies no filter
router [varchar(16)] // router name or IP to match; a value of 'none' applies no filter
inc_prot_ranges [integer[][]] // array of protocol ranges to match; a value of null applies no filter
inc_prots [integer[]] // array of specific protocols to match; a value of null applies no filter
exc_prot_ranges [integer[][]] // array of protocol ranges to filter out; a value of null applies no filter
exc_prots [integer[]] // array of specific protocols to filter out; a value of null applies no filter
inc_port_ranges [integer[][]] // array of port ranges to match; a value of null applies no filter
inc_ports [integer[]] // array of specific ports to match; a value of null applies no filter
exc_port_ranges [integer[][]] // array of port ranges to filter out; a value of null applies no filter
exc_ports [integer[]] // array of specific ports to filter out; a value of null applies no filter
min_ratio [real] // minimum (in_bytes / out_bytes) value to match
max_ratio [real] // maximum (in_bytes / out_bytes) value to match

Psyche Database Description
12 Oct 2008

Page 15 of 18

start_time [timestamp with time zone] // time from which to search
end_time [timestamp with time zone] // time to end search

Output Parameters
The results of the get_sessions() stored procedure are accessed via output parameters. The two
output parameters for this function are:

count [bigint] // number of rows in result set
results [refcursor] // result set cursor

The results refcursor will point into a result set with the following columns:

session_start | last_activity | router | src_addr | dst_addr | src_port | dst_port |
prot | in_bytes | out_bytes | ratio

session_start // timestamp of the beginning of this session
last_activity // timestamp of the last activity seen for this session
router // name or IP of exporting device
src_addr // IP address of source
dst_addr // IP address of destination
src_port // source port number
dst_port // destination port number
prot // protocol number
in_bytes // bytes entering the source in this session
out_bytes // bytes leaving the source in this session
ratio // (in_bytes / out_bytes)

Invocation
Note that each cursor exists only as long as the current transaction. Therefore, the GUI must
explicitly begin and end the transaction that encompasses this stored procedure call. Below is an
example invocation of the get_sessions() stored procedure that obtains the relevant sessions seen
by the 68.34.49.254 exporter/router between '2008-08-05 00:00:00-04' and the current time. Note
that it includes all protocols and ports with the exception of protocol 1 and ports 22 and 25.
Further, it only requests sessions with ratios between .5 and 2. The fetch command retrieves the
first 10 results.

begin;
select get_sessions('none','68.34.49.254',null,null,null,array[1],null,null,null,array[22,25],.5, 2,
 '2008-08-05 00:00:00-4',now());
fetch 10 from "<unnamed portal 2>";
end;

Psyche Database Description
12 Oct 2008

Page 16 of 18

bw_by_port()

Parameters
The following function prototype illustrates the stored procedure name and sequence of
parameters. Following the prototype is a detailed list of the input parameters.

 bw_by_port(network(varchar(18)), router(varchar(16)), direction(varchar(3)),
 inc_prot_ranges(integer[][]), inc_prots(integer[]), exc_prot_ranges(integer[][]),
 exc_prots(integer[]), inc_port_ranges(integer[][]), inc_ports(integer[]),
 exc_port_ranges(integer[][]), exc_ports(integer[]), num_ports(integer),
 start_time(timestamp with time zone), end_time(timestamp with time zone),
 OUT count(bigint), OUT results(refcursor));

network [varchar(18)] // network (in CIDR notation) to match; a value of 'none' applies no filter
router [varchar(16)] // router name or IP to match; a value of 'none' applies no filter
direction [varchar(3)] // perspective or orientation of traffic; acceptable values are 'src' and 'dst'
inc_prot_ranges [integer[][]] // array of protocol ranges to match; a value of null applies no filter
inc_prots [integer[]] // array of specific protocols to match; a value of null applies no filter
exc_prot_ranges [integer[][]] // array of protocol ranges to filter out; a value of null applies no filter
exc_prots [integer[]] // array of specific protocols to filter out; a value of null applies no filter
inc_port_ranges [integer[][]] // array of port ranges to match; a value of null applies no filter
inc_ports [integer[]] // array of specific ports to match; a value of null applies no filter
exc_port_ranges [integer[][]] // array of port ranges to filter out; a value of null applies no filter
exc_ports [integer[]] // array of specific ports to filter out; a value of null applies no filter
num_ports [integer] // number of ports to obtain; note that providing number x will return the top x-1 port values
 // and then one 'all other' value per interval
start_time [timestamp with time zone] // time from which to search
end_time [timestamp with time zone] // time to end search

Output Parameters
The results of the bw_by_port() stored procedure are accessed via output parameters. The two
output parameters for this function are:

count [bigint] // number of rows in result set
results [refcursor] // result set cursor

The results refcursor will point into a result set with the following columns:

interval_start | prot | port | bw

interval_start // interval boundary (5 minute granularity)
prot // protocol number
port // port number
bw // bandwidth = sum(bytes)

Invocation
Note that each cursor exists only as long as the current transaction. Therefore, the GUI must
explicitly begin and end the transaction that encompasses this stored procedure call. Below is an
example invocation of the bw_by_port() stored procedure that obtains the bandwidth consumed
(i.e., was the destination of the traffic) by the top 3 ports (per interval) over the last 7 days and

Psyche Database Description
12 Oct 2008

Page 17 of 18

seen by the 208.74.181.139 exporter/router. Note that it includes all protocols and ports, but
excludes protocol 1 and ports 80 and 443. The fetch command retrieves the first 10 results.

begin;
select * from bw_by_port('none', '208.74.181.139', 'dst', null, null, null, array[1], null, null, null, array[80,443], 3,
 now(), '7 days');
fetch 10 from "<unnamed portal 2>";
end;

bw_ratio()

Parameters
The following function prototype illustrates the stored procedure name and sequence of
parameters. Following the prototype is a detailed list of the input parameters.

bw_ratio(network(varchar(18)), router(varchar(16)), inc_prot_ranges(integer[][]),
 inc_prots(integer[]), exc_prot_ranges(integer[][]), exc_prots(integer[]),
 inc_port_ranges(integer[][]), inc_ports(integer[]), exc_port_ranges(integer[][]),
 exc_ports(integer[]), num_buckets(integer), min_ratio(real), max_ratio(real),
 start_time(timestamp with time zone), end_time(timestamp with time zone),

 OUT count(bigint), OUT results(refcursor));

network [varchar(18)] // network (in CIDR notation) to match; a value of 'none' applies no filter
router [varchar(16)] // router name or IP to match; a value of 'none' applies no filter
inc_prot_ranges [integer[][]] // array of protocol ranges to match; a value of null applies no filter
inc_prots [integer[]] // array of specific protocols to match; a value of null applies no filter
exc_prot_ranges [integer[][]] // array of protocol ranges to filter out; a value of null applies no filter
exc_prots [integer[]] // array of specific protocols to filter out; a value of null applies no filter
inc_port_ranges [integer[][]] // array of port ranges to match; a value of null applies no filter
inc_ports [integer[]] // array of specific ports to match; a value of null applies no filter
exc_port_ranges [integer[][]] // array of port ranges to filter out; a value of null applies no filter
exc_ports [integer[]] // array of specific ports to filter out; a value of null applies no filter
num_buckets [integer] // number of data buckets for histogram; corresponds to graph width
min_ratio [real] // minimum (in_bytes / out_bytes) value to match
max_ratio [real] // maximum (in_bytes / out_bytes) value to match
start_time [timestamp with time zone] // time from which to search
end_time [timestamp with time zone] // time to end search

Output Parameters
The results of the bw_ratio() stored procedure are accessed via output parameters. The two
output parameters for this function are:

count [bigint] // number of rows in result set
results [refcursor] // result set cursor

The results refcursor will point into a result set with the following columns:

 index | ratio_count

index // index of data bucket
ratio_count // number of sessions whose (in_bytes/out_bytes) values fell into this bucket

Psyche Database Description
12 Oct 2008

Page 18 of 18

Invocation
Note that each cursor exists only as long as the current transaction. Therefore, the GUI must
explicitly begin and end the transaction that encompasses this stored procedure call. Below is an
example invocation of the bw_ratio() stored procedure that obtains the histogram values for the
relevant sessions seen by the 68.34.49.254 exporter/router between '2008-08-05 00:00:00-04' and
the current time. Note that it includes all protocols and ports with the exception of protocol 1 and
ports 22 and 25. Further, it specifies a graph width (i.e., num_buckets) value of 256. The fetch
command retrieves the first 10 results.

begin;
select bw_ratio('none','68.34.49.254',null,null,null,array[1],null,null,null,array[22,25],256,
 '2008-08-05 00:00:00-4',now());
fetch 10 from "<unnamed portal 2>";
end;

